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Received 18 July 1989 

Abstract. The connection between solutions of the BKP equation and Hall-Littlewood 
symmetric functions is utilised in a unified approach to soliton and polynomial solutions. 
This is analogous to the Wronskian formulation of the solution of the K P  equation. As a 
by-product, two novel expressions for certain Hall-Littlewood functions in terms of 
Pfaffians are derived. 

1. Introduction 

It is well known that both polynomial and soliton-type solutions to equations associated 
with the bilinear KP hierarchy (Sato 1981) can be conveniently expressed in terms of 
Wronskian determinants (Freeman and Nimmo 1983, Ohta et a1 1988, Nimmo 1989). 
A second hierarchy, the BKP hierarchy, was discovered by Date et a1 (1982) and its 
polynomial solutions were determined. These solutions are expressed as Pfaffians 
rather than determinants. Recently, You (1989) has given a more explicit description 
of these solutions in terms of Schur's Q functions, which arise in the theory of projective 
representations of the symmetric groups (Schur 191 1). Also, very recently, Hirota 
(1989) has shown how solutions to the BKP equation may be verified by direct 
substitution using a quadratic Haffian identity. This work is viewed by Hirota as 
analogous to the work of Nakamura (1989) on the KP equation, in which solutions 
are expressed as non-Wronskian determinants. The aim of this paper is to describe a 
similar method which is directly analogous to the Wronskian approach, and also 
demonstrates the connection with the work of You (1989), and thereby with Date et a1 
(1982). 

2. Hall-Littlewood functions 

The KP equation in bilinear form is written as 

( 0 ( 1 4 ) +  30(22)-40(31))7 O 7 = 0 (2.1) 
where 7 is a function of a sequence of independent variables x = x, , x2, . . . and DA, 
for any partition A = ( A , ,  . . . , A n ) ,  denotes the Hirota derivative 

If pl, . . . , pN are any functions of x satisfying 

ajpi = &pi 
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for i = 1 , .  . . , N and j E Z', where ak = a / a x k ,  then the Wronskian determinant r = 
W(cp,, . . . , c p N )  satisfies (2 .1 )  (Freeman and Nimmo 1983). In particular, we may 
obtain functions h, (x )  satisfying (2 .2 )  from the generating function. 

where ai, . . , an are fictitious indeterminates such that x, = p i ( x ) /  i = ( a :  + . . . + a :)/ i 
and the polynomials hk(X) may be regarded as the kth complete symmetric function 
and pl(x) the ith power-sum symmetric function in a l l . .  . , a,, or as polynomials in 
x. The solutions to ( 2 . 1 )  obtained in this way are Schur functions, explicitly 

for any partition A = ( A l , .  . . , A,,) .  

t # 1 to give 
The generating function ( 2 . 3 )  may be generalised by the introduction of a parameter 

which reduces to (2 .3 )  when t = O .  From (2 .5 )  we see that 

( 1 - t ' )  

( 1  - t Y  
a,q, = ( 1  - t')q,-, = - d: 41 

and that if t is a j th  root of unity then the qi are independent of xk for k = 0 modj. 
Here we use the convention that qk = 0 if k < 0, and observe that qo = 1. 

The generalisations of the Schur function which arise from the above are Hall- 
Littlewood symmetric functions QA (Macdonald 1979) ,  which we define in an equivalent 
way to that of Littlewood (1961)  in terms af 'raising operators'. For a partition 
A = ( A l , .  . . , A m )  

m 

Q ~ ( x ;  t )  = n ( P - a b ) ) ( a ( ' j -  tab')-' n q A , ( . d ' ) ;  t ) l x ( l ) = x  (2 .7 )  
1% , < I S  m , = 1  

which reduces to ( 2 . 4 )  when t = 0, so that QA(x; 0) = S,(X). In ( 2 . 7 )  x(" denote distinct 
copies of x with a ' ' )  = a/ax\ ' ) .  We have 

. . .  (2 .8 )  (8"' - a ( J ) ) ( a ( l )  - t a ( ~ ) ) - l  = 1 + ( t -  1 ) , 3 ( 1 ) a ( ~ j - 2 + ( t 2 -  t )8 ( "2d( . " -2+  

and we impose boundary conditions such that for m 3 0 

a-"q, = ( 1  - t ) -"q ,+ ,  

so that in particular 

Q(A,,A2)(X;  I)= q A l ~ A 2 + ( t - l ) q A l + l q A ~ - l + .  * * + ( t A 2 - f A 2 - '  ) q A l + A 2 '  (2 .9 )  

We shall see shortly that polynomial solutions to the BKP equation are given in terms 
of QA(x; 1) (see also You 19891, but we shall develop the theory as far as possible 
with arbitrary t .  

A related set of polynomials is 

t ) = b ; l ( t ) Q A ( x ;  f )  (2 .10)  
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where b , ( t ) = n : = = ,  cp , , ( t )  and ( P k ( t ) = ( 1 - t ) ( l - t 2 )  . . . (  l - t k )  for a partition A =  
(n“‘I1 . . . 1 “‘I). In fact, the PA and QA form Z[ r ]  bases for polynomials in x with Z[ t]  
coefficients and an inner product ( , ) is defined, under which { P A }  and {QA} are dual 

t ) ,  P p ( x ;  t ) > = 8 A w *  (2.11) 
Extending the notation for power sum in the usual way for any partitions A = 
( A , ,  . . . , A,,,) = (n“‘!~, . . . , l”1) and p, we find that for this inner product 

where z A ( t ) = z A n ~ = l ( l - t A ~ ) - ’  and zA=n?=, i”lmi!. 

product also; for all v 

( P A ( x ) ,  ~ , ( x ) ) = z A ( t ) 6 A p  (2.12) 

Skew Hall-Littlewood symmetric functions Q A I P  are defined through this inner 

(2.13) 
Using a straightforward generalisation of the case for t = 0, in the language of Foulkes 
(1949) the operator A(PP), the adjoint of multiplication by P,, is such that A(PP)QA = 
e@,,, and the adjoint of multiplication by p p  is a differential operator. Indeed, from 
(2.12) one may show that for p = (pl,.  . . , pp)  

( Q A / P ( ~ ;  t ) ,  p ~ ( x ;  t ) ) = ( Q A ( x ;  t ) ,  P, (x ;  t ) P v ( x ;  t ) ) *  

Finally, the linear relationships 

P,(X) =c X g t ) P , ( x ;  f )  ( 2 . 1 5 ~ )  

Q,(X) =c Zpl(t)X:(f)Pp(X) (2.15 b)  

define X r (  t ) ,  and when t = 0 they reduce to the familiar relationships between power 
sums and Schur functions with Xf(0) =xf, the characters of the symmetric groups. 

P 

P 

Equations (2.15) also hold for the adjoints, and so from (2.14) we have 

and thus 

(2.16) 

(2.17) 

(2.20) 
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Now, using (2.15a) and comparing (2.20) and (2.17), we have 

(2.21) 

where lpl denotes the sum of the parts of p. 
When r = 0 this becomes the Jacobi-Trudi identity for skew Schur functions 

(MacDonald 1979) and for t = -1 we have an explicit version of (2.21) involving 
Pfaffians. In fact, we prove in the appendix that 

QA,,(x; -1) = Pf(Q(A,-+,J 
= ( 1  2 . . . n  a , , , . . . a l )  (2.22) 

where the notation is also fully explained in the appendix. 

3. The BKP equation 

In this section we show how some of the results of the previous section may be used 
to obtain solutions of the BKP equation, in Hirota form 

(o( 16) - 5 D(3 1') - 5 0 ( 3 2  1 + 5 1 1) 7 O 7 = 0. (3.1) 

It has been shown (Date er a1 1982, You 1989) that polynomial solutions of (3.1) 
are given by 

T =  QA(2x; -1) (3.2) 
for any partition of A into distinct parts. We may verify this directly using the Pfaffian 
identity 

(1 2 . . . n  n + l  n + 2  n + 3  n+4)(1 2 . . . n )  

-(1 2 . . . n  n + l  n+2) (1  2 . . . n  n + 3  n + 4 )  

-(1 2 . . . n  n + l  n+4) (1  2 . . . n  n + 2  n + 3 ) = 0  (3.3) 

+ (1  2 . . . n  n + l  n+3)(1 2 . . . n  n + 2  n + 4 )  

(Matsuno 1989, Hirota 1989), where n is even. 
Expressing the derivatives of T given by (3.2) using (2.17) gives 

(3.4) 



The B K P  equation 755 

The above verification is, however, not restricted to the polynomials QA(2x; -1). 
Let cpl(xo), . . . , cp,(xo) ( n  even) be a set of functions depending on xo = (x,,  x3, xs . . .) 
and satisfying 

d k c p i ( x 0 )  = afvi(x0) (3.5) 

Pf(cp,,.. . cp,)=(l 2 . . .  n )  (3.6) 

( 0 )  = (a''' - a"') (a'" + a"') - 1  cp,( xb") cpj( xbj))(x~p=x~')=xo. 

for i = 1 , .  . . , n and k odd. Define the Pfaffian 

where 

As a consequence of (2.7), we may write (3.6) as 

Pf(cpl,. . , 9,) = n (~"'-a'")(a"'+d"')-' n (3.7) 
i < j  & = I  

The discussion of section 2 and the proof in the appendix remain valid in this more 
general case, and we have 

where PfA((p1,. . . , $0,) = (1 2 , . . n a,,,,, . . . aAl) with ( 0 )  as above, ( iaAJ)  = 1 3 * l c p ,  and 
(aA,aA,) = 0. This is a generalisation of the result of Hirota (1989) with an interpretation 
for the constants that appear in his work as X;(-l). 

To obtain soliton solutions, we choose cpl = exp[5(xo, p,)]+ c, exp[5(xo, ql) ]  where 
((x,, a )  = x k o d d  akxk and p,, q1 and c, are constants for i = I ,  . . . , n. The m-soliton 
solution for m odd is obtained from the ( m  + 1)-soliton solution with pm+l = qm+]  = 
c,+] = 0 so that qm+, = 1. Notice that 

(a"' - a c J ' ) ( ~ c l ' + a ' J ' ) - '  exp[t(x;', a ) ]  exp[t(xbJ', b ) ] l x ~ ~ ~ = x ; ~ ) = x o  

= (") exp[t(xb", a ) ]  exp[t(xb", b ) ]  
a + b  

and so by (3.7) the one- and two-soliton solutions are 

P (  cpl ) = (a"' - a'2')( a( ] )  + a'2') - I  c p ]  (xb' 1) 1 Ixp=xo = cp I (xo) 

and 

respectively. 
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These expressions are the same as the more usual ones (Date et al 1982) apart 
from an unimportant exponential factor. For example, with appropriate choices of c1 
and c2, 

P(cpl, cp2)~1+c ' ,  exp[f(xo,~l)-5(xo, 4 1 ) 1 + c ~ e x p [ 5 ( x 0 , ~ ~ ) - 5 ( % 0 ,  q2)1 

(P1 -P2)(91- q2)(p1+ qz)(ql+P*) 
(PI+P2)(41+42)(PI -42)(41 -PA 

+c:c: 

x exp[l(xo, PI)  + 5 b 0 ,  PZ) - 5 b 0 ,  ql)  - 5 b 0 ,  q d l .  
The representation of the soliton solutions as Pfaffians that we give is different from 
that of Hirota (1989) and the form (3.7) is analogous to the Wronskian representation 
of solutions to the KP equation 
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Appendix 

Here we record some properties of Pfaffians and establish (2.22). 
Let A be an n x n skew-symmetric matrix with entries av. It is known that if n is 

odd then det(A) is zero, and if n = 2m is even then det(A) is a perfect square. In fact, 
if we define the Pfaffian of A 

pf(A) = C ~ ( w ) w ( a l , Z a 3 , 4 . .  . a2m-ta2m) ('41) 
we&, , ,  

where i2m denotes the set of permutations of indices (1 , .  . . 2 m }  such that 

w ( 1 )  < w ( 2 ) ,  . . . , w(2m - 1) < w(2m) and w(1) < w(3) <. . . < w(2m - 1 )  

(A2) 
and E ( W )  its parity, then 

det(A) = (Pf(A))'. 

A frequently used notation for Pfaffians (Caianiello 1973) is 

Pf (A)=( l  2 . . .  2 m ) =  

where (0) = ai , j .  In the same notation 

E ( w ) w ( ( ~  2)(3 4) . . .  ( 2 m - 1  2m)) 
W E S 2 # U  
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where the top line indicates the row indices and the second the columns indices. An 
extension of the above notation is used to denote Pfaffians of matrices with blocks of 
zeros; one writes 

(A51 

Pfaffians have similar symmetry properties and expansion rules to determinants. 

(A6) 

P f (A)=( i  is..@ p + 1  . . .  2m) 

if the matrix A is such that aU = 0 for 1 S i, j 6 p .  

For any permutation w of indices { i, , . . . , i k }  

( w ( i l ) ,  w ( i z ) ,  . . . , W ( i k ) ) = & ( W ) ( i i , .  . i k )  

2 m  

(1 2 . . . 2 m ) =  c (-1)’+~+’(ij)(1 . . .  i - l , i + l ,  . . .  j - I , j + l ,  . . .  2m) (A7) 
1 = l  

is the expansion of Pf(A) by its j th  line-those entries in A having either index equal 
to j .  The rule for expanding a Pfaffian by a group of k lines is rather more complicated 
than its determinantal analogue (Caianiello 1973), so we only write it down for the 
special case we will be interested in. 

( i  . . . k k +  1 . . .2m)  

For a matrix A with k x k block of zeros Pf(A) is given by 

k ( k - 1 ) / 2  1 ... k )(w(2k+ 1 ) .  . . w(2m)) 
= (-1) 

W E  s 2 m - h , h  E ( W ) ( w ( k + l ) . . .  w(2k) 
(A81 

where 92m-k .k  is the set of permutations of {k+  1,. . . ,2m)  such that 

w (  k + 1) < w (  k + 2) < . . . < w (  2k) 

is 

and w ( 2 k + l ) <  . . .  <w(2m). 

Another definition of the Hall-Littlewood symmetric functions (Macdonald 1979) 

where A = ( A , ,  . . . , A,) with m S n and A,,, = . . . = A n  = O .  S^, denotes the set of 
permutations of (1, .  . . , n} which fix the monomial a:la:z.. . a“,’. It is known that 

without loss of generality, we may assume that m and n are both even. 

unless A has distinct (non-zero) parts. Thus, for such A 

p A ( a I , * * . 9 a n + I ;  f ) = P A ( a l , . * . 9 a n , o ;  ‘ )  if P ( A ) S n  and P ( A i ,  , A , , , . O ) = P ( A l  , A , , , )  so, 

For t = -1, equation (2.7) implies that QA,  and hence by (2.10) PA also, vanish 

PA ( a 1 9 . * . 9  an ; - 1 1 

I = S ~ < J S ~  “I-a, a I + a J ) )  I = I ~ = ~ + I  fi fi “i-0, 

so that 
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For a 2p x 2p matrix A with ( i ,  j)th entry (a, + aj ) /  ( a, - aj ) ,  we may show that 

Pf(A)= n ( a i - a i ) .  ( A l l )  
1=zi<jr2p C Y ,  + aj 

This is because of the following properties are shared by the both sides of ( A l l ) .  If 
any pair ai ,  aj ( 1  s i, j xs 2p) are equal, then each side vanishes and from ( A l )  we see 
that the common denominator of Pf(A) is (a, + aj) .  Also, the order of its numerator 
implies that Pf(A) has no zeros other than those described above and, by using 
induction, one can show that the coefficient on the RHS is unity. 

Using ( A l l )  in (AlO), noticing that ZWIES,,, E ( w ’ ) w ‘ ( ~ : ~  . . . a k m )  is det(a?f) and then 
by comparison with (A8), we find an expression for PA(a l , .  . . , a, ; -1)  as a ratio of 
Pfaffians. In this expression we perform a permutation of lines in order to eliminate 
the alternating factor and hence obtain 

P A ( a l ,  . . . ,  a,; -l)=Pf(A’)/Pf(A) (‘412) 
where ai,j = (a i  + a;) / (&,  - a j )  so that A is a skew-symmetric n x n matrix and 

A’=(  - A BT :) 
where b,,j = ( a t j )  and B is an n x m matrix. This result appears to be new and is an 
analogue of the famous expression for Schur functions as ratios of determinants. As 
an example of the Pfaffians in (A12), we take A = (21) and n = 3. Since n is odd we 
extend the number of indeterminates to four so that, using the triangular array notation 
(see Caianiello 1973) 

a,-a2 aI-a3 Pf(A)= - - 
a1+a2 a,+a3 

a 2 - a 3  

and so when a4=0, 

a,-a2 a,-a3 Pf(A)= - - 
a,+a2 a,+a3 

a 2 - a 3  

and 
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To prove (2.22) we consider (2.21) with t = -1 and use (A10) with indeterminates 

(A14) 

ai =a"'. This gives the formula 

Il(d"'; -l)Pp(d(i); - 1 )  = Pf(A'(8"')) 

where A'(8(i') denotes the matrix A' with 8"' replacing a,. In order to get this expression 
we replace the rational functions in (A10) with infinite power series, e.g. 

-- f f , - f f 2  - 1 -2a,a;'+2a:a;Z., 
f f , + a 2  

and for ai = a',' the RHS equals ( a c " - ~ c 2 ' ) ( ~ c ' ' + 8 ' 2 ' ) - 1  whenever this inverse is defined. 
In particular, as described following (2.8), (A14) is well defined when acting on 

In (2.21) let A = ( A l , .  . . , A,) and p = ( p , ,  . . . , p,) be such that n and m are both 
even and, if not, append a zero to either partition so that they are so. Now, if we 
define A , + , = .  . . = A , + ,  =0,  f i j = O  for j = 1  ... n and f i j=p , ,+m- j+ l  for j=  
n + 1 , .  . . , n + m, then 

qA,(x'") . . qA,(x '" ' ) .  

Pf(A'(8"')) n q A , ( X ' " ;  -I)Ix"'=x = 2Ip'Pf(Q(A,-~,,~,)(X; - 1 ) )  
i = l  

where (2.6) has been employed. Equation (2.22) now follows immediately. 
In terms of the other notation for Pfaffians that we have used 

( 1  2 . . .  n a ,  . . .  a , )  
( 1  2 . . .  n )  

pA( f f , ,  a2,.  . . f f n ;  - I ) =  

where 

a, - aj 
(ij) = ( iaj) = a:! (U@, )  = 0 

a, + aj 

while 

Q A , p ( x ;  - l ) = ( l  2 . . . n a , .  . . a , )  (A161 

where 

(ij) = Q(A,,All(x; - 1 )  ( j a j )  = qA,-G,(x; - 1 )  ( a,aj)  = 0. 

This formula is essentially a generalisation of a result of Hirota (1989) expressed in 
different language. The proof here is quite different. 

Finally in this appendix we list the matrices used in the transformation from 
derivatives of Q functions to skew Q functions. These are obtained using the transition 
matrices described by Macdonald (1979). 

Let X ( t )  be the square matrix with entries X i ( t ) ,  the constants in (2.15)-(2.17), 
in which the column index is A and the row index is p. The dimension of X (  t )  equals 
the number of partitions of n = IAl = / P I .  Such an X (  t )  exists for each n 2 0 .  In fact 

X ( t )  = X ( O ) K ( t )  

where K ( t )  are matrices of the same dimensions as X ( t )  which are tabulated in 
Macdonald (1979) pp 126-7, and the entries in X ( 0 )  are group characters xi which 
may be found in the appendix of Littlewood (1950). 
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For t = -1  the Hall-Littlewood functions P,,(x; t )  vanish unless A is a partition 
into distinct parts, and are independent of X 2 k .  As a consequence of this, the matrices 
Xt(- l )  are restricted to A being a partition into distinct parts and p a partition into 
odd parts. The relevant restricted matrices X(-1) are still square and for the given 
values of n are 
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